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ABSTRACT
Climate change (global warming) is leading to an increase in heat extremes and
coupled with increasing water shortage, provides a perfect storm for a new era of
environmental crises and potentially, new diseases. We use a comparative physio-
logic approach to show that one of the primary mechanisms by which animals
protect themselves against water shortage is to increase fat mass as a means for
providing metabolic water. Strong evidence suggests that certain hormones
(vasopressin), foods (fructose), and metabolic products (uric acid) function as
survival signals to help reduce water loss and store fat (which also provides a source
of metabolic water). These mechanisms are intricately linked with each other and
stimulated by dehydration and hyperosmolarity. Although these mechanisms were
protective in the setting of low sugar and low salt intake in our past, today, the
combination of diets high in fructose and salty foods, increasing temperatures, and
decreasing available water places these survival signals in overdrive and may be
accelerating the obesity and diabetes epidemics. The recent discovery of multiple
epidemics of CKD occurring in agricultural workers in hot and humid environments
may represent harbingers of the detrimental consequences of the combination of
climate change and overactivation of survival pathways.
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The 21st century is bringing new chal-
lenges with population expansion, a de-
crease in natural resources, and climate
change. Mean temperatures increased by
0.8°C since 1880, with two thirds of the
change occurring since 1975, and they
are projected to increase by 3°C to 4°C
by the end of the 21st century.1,2 Temper-
ature extremes have also increased by 75%
because of climate change.3 Continued
population growth and to a lesser extent,
climate change have also resulted in de-
creasing water resources.4,5 Today, one
half of the world population suffer

moderate water shortage (i.e., 1.0–1.7 m3

water per person per year), and 10% have
extreme water shortage (defined as
,0.5 m3 per person per year), with the pri-
mary areas affected being Africa, southern
and eastern Asia, and the Middle East.4

Increasing water shortage coupled
with climate change increases the risk
for dehydration-associated diseases. For
example, there is increasing evidence that
climate change may have a role in epi-
demics of CKD that are occurring among
workers in hot environments.6 While this
latter paper focuses on the sites of these

epidemics and their relationship to local
temperatures and changing climate, space
constraints prevented it from being able to
address a more central question on the bi-
ology of water conservation and how it re-
lates todisease.Herewe reviewhowvarious
species protect themselves from dehydra-
tion, and we identify nutrient, hormonal
and metabolic pathways triggered by hy-
perosmolarity that link water conservation
with survival. We also discuss how these
pathways may predict diseases that will
dominate the next millennium. Impor-
tantly, climate change, heat stress, and
water shortage not only will affect kidney
disease, but risk for metabolic diseases in-
cluding obesity and diabetes.

HOW ANIMALS SURVIVE WATER
SHORTAGE

The transitionofvertebrates fromseabased
to land was associated with many adapta-
tions, but someof themost importantwere
mechanisms to conserve water, including
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ways to store water, minimize water loss,
and generate water.7

Water Storage
Some terrestrial animals store water in
their bladders. The water-holding frog
(Cyclorana platycephala) of the Sandy
Desert of Australia, for example, stores
so much water that it may double its
weight.8 These frogs were a favorite
source of water for the Tiwi people dur-
ing hot summers. Some frogs live 5 years
without drinking water, which is because
they utilize water stored in their bladders
and also generate water during the me-
tabolism of fat.7,8 The giant tortoise of
the Galapagos Islands stores water in
their urinary bladder. After rain, the tor-
toise voids their bladder urine (which
contains urea and other waste products)
and drinks copiously to refill their blad-
der with fresh water. When needed, the
turtle reabsorbs the water through the
bladder wall, while at the same time, ex-
creting some of its wastes into it, and
over time, the osmolarity of the bladder
urine increases.9

Reduced Urinary Water Losses
Homer Smith6 proposed that the evolu-
tion from aquatic to terrestrial environ-
ments required efficient ways to excrete
nitrogen to help minimize loss of wa-
ter.10 Most aquatic animals excrete am-
monia, the simplest nitrogen product, as
their means for eliminating nitrogen
waste products (ammoniotely). In con-
trast, ammonia is not an appropriate
compound for nitrogen excretion by ter-
restrial animals, because its renal excre-
tion requires 400 ml water per 1 gram
ammonia and blood levels .0.05 mM
are neurotoxic.10 Rather, urea excretion
is common among land amphibians and
mammals, because it is concentrated
easily and with low toxicity. Most effec-
tive is excretion of uric acid (uricotely),
which requires only 1/50 the amount of
water as that for the excretion of ammo-
nia. Excretion of uric acid is the principal
mechanism for nitrogen excretion in
birds, reptiles, and some amphibians.10

Here, the uric acid is precipitated in the
cloaca, where the last water is absorbed,
and then, the urate pellet is excreted.

Although ureotelic animals have ob-
ligatewater loss to help excretemetabolic
wastes, urinary loss is minimized by
urinary concentration, a process largely
driven by vasopressin (or vasotocin in
lower vertebrates). Vasopressin reduces
water excretion by allowing water reab-
sorption in the collecting ducts, but it also
increases sodium and urea reabsorption.
The reduction in urea excretion by vaso-
pressin improves urinary concentration
by increasingureaaccumulationintherenal
medulla, which aids water reabsorption.

Reducing Nonrenal Water Loss
Water loss also occurs through the skin
and lungs, where it helps regulate body
temperature when animals are exposed
to heat. A lack of sweating can result in a
marked rise in body temperature and
circulatory collapse (heat shock). In
contrast, excessive sweating without re-
hydration may result in hypernatremia
and volume depletion.

Desert rodentsminimizewater loss by
hiding during the day in burrows, where
temperatures are lower and humidity is
high. Lungfish coat themselves with
slime to minimize water loss as they
burrow and estivate in the mud. Estivat-
ing frogs (C. platycephala) form cocoons
from sloughed epithelial layers of skin.11

Tree frogs decrease water loss by secret-
ing an impermeable waxy material onto
their skin.11 Lemurs estivate in tree hol-
lows to avoid sun exposure and reduce
their metabolism and water needs. The
dromedary camel conserves water by
minimizing sweating because of a reduc-
tion in sweat glands. The camel also does
not pant and has adaptations in its nose
that minimize respiratory losses of wa-
ter.12,13 The consequence is significant
diurnal variation in body temperature
(as much as 6°C), with temperatures oc-
casionally reaching 40°C on hot days.12 To
prevent dehydration, camels ingest large
volumes (up to 57 L) of water at one sit-
ting. Despite these preventive measures,
camels can become severely dehydrated.14

Metabolic Water
Water is also generated during fat and
glycogen metabolism. Fat is anhydrous
andcontains only 10%water byweight,15

but when fat is oxidized, water and car-
bon dioxide are released. For every gram
of fat metabolized, 1.12 ml water is gen-
erated.16 Liver or muscle glycogen also
generates 0.6 ml water per gram of gly-
cogen metabolized.17 Because glycogen
is water soluble, it also releases potas-
sium and water during metabolism, ac-
counting for an additional 3mlwater per
gram of glycogen metabolized.18,19 The
marked diuresis after initiation of a low-
carbohydrate diet is partially because
of water released during glycogen me-
tabolism.19 Although glycogen metabo-
lism produces metabolic water, most
organisms store more fat than glycogen.
Thus, fat is themajor source of metabolic
water for most animals.

Metabolic water is used by many
animals to survive periods of water
shortage. Marine whales obtain much
of their water from the burning of fat.20

Although capable of ingesting seawater
and excreting a urine more concentrated
than seawater, whales rarely use this
method for obtaining water.20 Lungfish
obtain water from fat metabolism while
they estivate in the mud for 1–2 years.
Desert rodents, such as the sand rat
(Psammomys obesus), have high body
fat, which they use to generate water
during timesofneed. Largerdesert animals,
such as the camel and oryx, also use meta-
bolic water, and in the oryx, this may ac-
count for 24% of its overall water needs.21

Some obligatory water loss by the
lung occurs during fat metabolism be-
cause of theneed to excrete carbondioxide
that may counter the gain of water pro-
vided during fat metabolism.22 However,
animals like camels have developed tech-
niques to reduce water loss from their air-
ways and skin.12,13

SURVIVAL MECHANISMS
ASSOCIATED WITH
DEHYDRATION

Because fat and glycogen act as storage
for water, it is not surprising that survival
mechanisms associated with starvation
and water shortage have overlapping
metabolic pathways. Here, we discuss
some of these mechanisms.
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Vasopressin: The Survival Hormone
Vasopressin is an old hormone, with its
predecessor, vasotocin, appearing 700
million years ago.23 Although vasopres-
sin reduces urinary water losses in
response to a loss of intracellular or ex-
tracellular fluid, it has other actions that
may aid water conservation.24 For exam-
ple, vasopressin may also reduce nonre-
nal water loss25,26 by acting via V2
receptors in the lungs.27 Vasopressin
also reduces fever because of antipyretic
effects that reduce water loss.24 In frogs,
vasotocin reduces water loss through the
skin and stimulates water reabsorption
from the bladder when frogs are exposed
to dehydrating stimuli.11,23 In humans,
however, the reduction of sweating in
dehydrated individuals occurs via a
vasopressin-independent mechanism.28,29

Vasopressin has other survival func-
tions (Figure 1). Acute infusion of vaso-
pressin increases serum glucose in
humans,30 likely by stimulating glyco-
genolysis and gluconeogenesis.31–34 Va-
sopressin stimulates glucagon release
from islet cells.34 Vasopressin stimulates
sodium reabsorption in the cortical and
outer medullary collecting ducts.24

Vasopressin also stimulates protein syn-
thesis, cell proliferation, and cell hyper-
trophy in vitro.35

Vasopressin also may stimulate fat
accumulation. Vasopressin blocks fat
oxidation31,32 and enhances fat accumu-
lation by blocking lipolysis in fasting
animals.32,35,36 In fasting animals, vaso-
pressin reduces ketosis but increases
glucose levels.32 Vasopressin enhances
insulin resistance and fatty liver accu-
mulation in the obese Zucker rat.37

Vasopressin secretion is associated with
stress responses that improve chances
for survival. For example, vasopressin
acutely increases BP and induces vascular
constriction via the V1a receptor.35 Va-
sopressin stimulates adrenocorticotro-
phic hormone release from the anterior
pituitary via the V1b receptor38,39 and
catecholamine release from the adrenal
medulla, where both V1a and V1b recep-
tors are expressed.40 Vasopressin acti-
vates the renin-angiotensin system35

and stimulates aldosterone release.35

These stress responses are associated
with vasopressin–mediated behavioral
changes that include aggression, anxiety,
impulsivity, and memory.36,41,42

Fructose: The Survival Nutrient
The effect of vasopressin to stimulate fat
accumulation (by blocking fat oxida-
tion), increase blood glucose (via gluco-
neogenesis), increase BP, and stimulate

stress responses is reminiscent of the ef-
fects of fructose.43 It is of interest that
fructose, but not glucose, stimulates va-
sopressin release in humans.44,45 We re-
cently showed that orally administered
fructose augments circulating vasopres-
sin levels (as determined by measuring
copeptin, a validated biomarker for va-
sopressin46) and urinary concentration
in dehydrated rats.47 Fructose also stim-
ulates urinary sodium reabsorption48

and reduces urea excretion49 similar to
vasopressin.

Dehydration also results in endoge-
nous fructose production because of ac-
tivation of the aldose reductase-sorbitol
dehydrogenase (polyol) pathway.50 We
found that acutely dehydrated mice
show a blunted vasopressin response if
endogenous fructose metabolism is abol-
ished (by using fructokinase knockout
mice) (C. Roncal-Jimenez et al., unpub-
lished data). These studies emphasize
a strong relationship between fructose
and vasopressin.

We speculate that fructose may be a
primary nutrient for survival, especially
under conditions of reduced food or
water availability. Indeed, the adminis-
tration of fructose to fasting humans
increases glucose levels (likely from the
metabolism of fructose itself) and reduces

Figure 1. Vasopressin, the ultimate survival hormone. Vasopressin may have originated as a survival hormone for situations where the
organismsuffered fromeitherextracellular volumeor intracellular volume loss. Theeffectsof vasopressin includeactionsmuchgreater than
simply preventing the loss of water but also, include generating a stress response, increasing BP, stimulating protein synthesis, stimulating
fat accumulation, andmaintaining elevated serumglucose (insulin resistance) to provide energy to the brain. ACTH, adrenocorticotrophic
hormone; CNS, central nervous system; RAS, renin angiotensin system.
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ketosis, amino acid–induced gluconeo-
genesis, urinary nitrogen (ammonia and
urea) excretion, and sodium excretion.49

These are the same effects observed when
vasopressin is given to starving animals.32

Thus, fructose and vasopressin may act
similarly to preserve water, salt, and fat
while maintaining glucose levels as a
source of energy for brain function.
Viewed this way, the action of vasopressin
to stimulate fat accumulation provides a
mechanism for not only storing water but
also, providing energy during times of
food or water deprivation.

Uric Acid: The Metabolic Danger
Signal
As discussed earlier, birds and reptiles
excrete uric acid as their primary means
for excreting nitrogen to minimize water
loss.10 Despite uric acid being a potent
extracellular antioxidant,51 the uric acid
generated during fructose metabolism
stimulates hepatic fat accumulation (by
blocking fat oxidation) and gluconeo-
genesis, increases BP, and stimulates im-
pulsivity in laboratory animals.52–56 In
rodents, uric acid potentiates the effect
of fructose to stimulate hepatic fat accu-
mulation and gluconeogenesis.57,58

These data suggest that uric acid may
also be ametabolic survival factor, which
is consistent with observations that se-
rum uric acid increases with both dehy-
dration and starvation.59

Interestingly, the rise of uric acid that
occurs with protein degradation and
amino acid–induced gluconeogenesis is
reversed with fructose in fasting hu-
mans.49 Likewise, although vasopressin
reduces uric acid excretion in healthy
subjects,60 in the syndrome of inappro-
priate antidiuretic hormone, serum uric
acid is low, and urinary uric acid excre-
tion is high.61,62 Thus, whether uric acid
has a role in water handling remains un-
clear and deserves additional studies.

DEHYDRATION IN HUMANS

Dehydration in the Hot Environment
Humans have obligate daily water losses
from the lungs (250 ml/d) and urine
(350–500 ml/d). In hot conditions,

water losses from sweat may increase
to 3–4 L/h and 8 L over a 24-hour pe-
riod.15 Subjects working in hot tropical
environments acclimate by producing a
higher sweat rate that is lower in so-
dium, thereby resulting in less increase
in core temperature, and also, they have
higher plasma volume, less oxygen utili-
zation, and less lactate accumulation.63

However, this adaptation may result in
greater water loss and increased risk for
hyperosmolarity.63 To help counter water
loss from sweat, subjects living in the
tropics tend to have slightly higher core
temperatures during the day, with a
greater fall at night, showing a similar
trend as that observed in camels.64

Dehydrationdevelops easily in the hot
environment. An increase in serum os-
molarity of 10 mosM/kg occurs within
40 minutes of exercise in the heat65 or
with water deprivation for 24 hours.66,67

The Tsimane Indians of the Amazon
show evidence of dehydration in 40% of
subjects, especially on dayswith high tem-
peratures and strenuous physical activity,
despite mean water intake of 6 L daily.68

Chronic recurrent dehydration is also
common in sugar cane workers in Cen-
tral America who work under hot and
humid conditions.69–71 After dehydra-
tion occurs, mental and physical perfor-
mance worsen,65,72,73 total sweat volume
decreases,74 and relative water content of
sweat decreases (reflected by higher so-
dium concentration).63 Energy intake
also decreases, which results in a reduc-
tion in obligate osmoles required for
excretion.67 Ultimately, confusion, sei-
zures, and coma may develop.

Diseases Favored by Water
Shortage and Climate Change
Heat Stroke and Acute Mortality
Heat waves increase the risk for heat
stroke and heat-associated mortality.75–77

In 2015, .1400 deaths occurred from
heat stroke in Andhra Pradesh, India.78

In a case-control study performed in
Arizona, the risk for heat-associated
death was 3.5-fold among agricultural
workers and 2.3-fold in construction
workers, and it was disproportionately
higher in Native American and Hispanic
American men.77

Kidney Stones
The risk of kidney stones is increased in
subjectswith lowurine output because of
the effect of urinary concentration to
increase concentrations of poorly soluble
constituents, like calcium oxalate and
uric acid. There is a relationship between
mean daily temperature and risk for
kidney stones, especially when tempera-
tures exceed 30°C.79

CKD
Heat stress doubles the risk for devel-
oping CKD among those working in
hot environments.80 Recently, epidemics
of CKD have been reported in India, Sri
Lanka, Mexico, and Central Amer-
ica.81–86 The CKD observed in these
areas is not because of the classic causes
of CKD, such as diabetes or hyperten-
sion, but rather, seems to be a type of
chronic tubulointerstitial disease.87,88

Although the roles of toxins and infec-
tions have not been completely ruled
out, common risk factors for each of
the epidemics are hot temperatures and
recurrent dehydration that can be linked
with climate change.89

Although acutedehydration is known
to cause a transient reduction in kidney
functionwithout permanent renal dam-
age, chronic recurrent heat–induced de-
hydration causes CKD in mice.50 The
mechanism for CKD may involve hyper-
osmolarity-induced alteration of fruc-
tose and vasopressin metabolism (Figure
2). The rise in serum osmolarity stimu-
lates vasopressin and increases intrarenal
fructose generation via activation of the
aldose reductase pathway.50 The metab-
olism of fructose within the proximal
tubule results in local oxidative stress, in-
flammation, and uric acid generation,
which induce local injury.90 Experimen-
tal studies also document a role for vaso-
pressin in CKD.91 An increase in serum
and urinary uric acid also occurs with
heat and exercise, which increases the risk
for urinary urate crystal formation.89,92

The possibility that dehydration may
be a risk factor for CKD should also be
considered. Low urine output93,94 and
high urine osmolarity95 predict risk for
the progression of CKD. Low intake of
plain water increases the risk for CKD,
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whereas intake of other beverages does not
show the same effect.94 Likewise, high va-
sopressin levels (indicated by high plasma
copeptin levels) are associated with in-
creased risk for microalbuminuria.96,97

Currently, there is a randomized trial to
determine if supplementation with water
to increase urinary output to.3 L/d slows
the progression of CKD.98

Obesity, Metabolic Syndrome, and
Hypertension
As mentioned, fructose and vasopres-
sin show similar effects to increase fat
stores and conserve water (Figure 3).
This suggests that transient elevations
in serum osmolarity because of either a
relative water deficit or a high-sodium
diet might be associated with increased
risk for obesity and metabolic syn-
drome. Evidence supporting hyperos-
molarity as a risk factor for obesity and
metabolic syndrome is increasing.

First, obese subjects have elevated
plasma sodium and plasma osmolar-
ity.99 Second, plasma hypertonicity
predicts the development of diabetes
in subjects .70 years old.100 Third,
subjects with metabolic syndrome
and insulin resistance have elevated
plasma copeptin levels.101–104 Fourth,
elevated levels of plasma copeptin pre-
dict development of diabetes96,105 and
obesity.96

Although inadequate hydration and
hot temperatures facilitate hyperosmo-
larity, it could also be enhanced by a
high intake of salt with a less than
adequate intake of water. In this regard,
low water intake predicts development
of insulin resistance,106 whereas in-
creasing water intake is associated
with weight loss, at least in overweight
subjects.107 High salt intake is also as-
sociated with obesity, metabolic syn-
drome, and diabetes108–112 and predicts

these conditions independent of energy
intake or intake of sugary bever-
ages.112–114 Thus, the development of
obesity is not simply because of greater
intake of soft drinks consequent to
salt-induced thirst, which has been
suggested.115 Furthermore, subjects
given a high-salt diet show reduced
insulin sensitivity within 5 days.116 Con-
versely, hyperinsulinemia promotes dis-
tal tubular sodium retention.117

Hyperosmolarity likely increases the
risk for obesity and metabolic syndrome
by stimulating vasopressin (Figure 3).
Indeed, water loading reduced fat con-
tent of the liver of obese Zucker rats
coupled with a reduction in vasopressin
levels.37 However, hyperosmolarity is
likely acting via another pathway as
well. We recently found that mice fed a
high-salt diet for 5months develop leptin
resistance, obesity, and metabolic syn-
drome (M.A. Lanaspa et al., unpublished

Figure 2. Potential mechanisms involved in heat stress–associatedCKD. CKDoccurring in response to recurrent dehydrationmay involve
a variety of mechanisms. Central to the loss of water is the development of hyperosmolarity, which stimulates the release of vasopressin,
and the generation of fructose in the kidney from activation of the polyol (aldose reductase-sorbitol dehydrogenase) pathway.50 Vaso-
pressin acts to increase glomerular hydrostatic pressure and increases the risk for progression of kidney disease.91,123,124 Endogenous
fructose production is also metabolized by fructokinase in the proximal tubule, resulting in tubular injury and the release of oxidants, uric
acid, and chemokines.90 Fructose may also increase vasopressin levels,125 and likewise, rehydration with sugar beverages may provide
additional fructose, with an amplification of the vasopressin and uric acid levels.47 Furthermore, other factors thatmay be involved include
low–grade muscle injury associated with excessive physical exertion leading to subclinical rhabdomyolysis,126 an increased risk for
nonsteroidal anti–inflammatory drug (NSAID) use, and rarely, hypotension from volume depletion. Volume depletion may also be as-
sociated with activation of the renin-angiotensin system and development of hypokalemia, which may also play a role in kidney disease.
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data). The mechanism was shown to be
caused by hyperosmolarity-mediated
upregulation of aldose reductase in the
liver, which resulted in endogenous fruc-
tose generation via the polyol pathway.
Importantly, mice unable to metabolize
fructose because of genetic deletion of
fructokinase were protected from devel-
oping metabolic syndrome and fatty
liver, despite ingesting equal amounts
of salt.

Hypertonicity also regulates BP and
the immune system.118–120 Specifically, a
high-salt diet activates a transcription
factor, NF of activated T cells 5, that
stimulates macrophages to sequester
salt in the skin, thereby modulating BP.
Salt-induced hypertonicity also activates
T helper 17 lymphocytes involved in
host defense.121

SUMMARY

In summary, climate change and low
water intake are increasing our risk for
dehydration–associated kidney diseases,

including kidney stones, heat stroke, and
CKD. Hyperosmolarity, especially in a
sedentary environment, may also in-
crease the risk for obesity and diabetes.
We speculate that hyperosmolarity trig-
gers factors originally designed to aid
survival by increasing fat stores and
conserving water, such as vasopressin,
endogenously produced fructose, and
uric acid. Overactivation of these path-
ways may act in synergy with Western
diets high in fructose-containing sugars,
salt, and purine-rich foods to accelerate
the obesity and diabetes epidemics (Fig-
ure 2).43,50,91,122 Similarly, recurrent
dehydration and heat stress may also
be playing a role in causing CKD via
similar pathways.89

More studies are needed to investigate
the effect of climate change and water
shortage on kidney disease and diabetes
and especially, the role of vasopressin,
fructose, and uric acid. Intervention
studies to improve worksite condi-
tions and hydration among agricultural
workers in tropical communities and
other at–risk groups are recommended.

Recognizing the importance of the kid-
ney in climate change–associated disease
will prepare nephrologists to face an in-
crease in heat stress–associated kidney
diseases predicted to occur in the next
decades.
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